skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Castrillo, Gabriel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 28, 2026
  2. Both chronic and acute drought alter the composition and physiology of soil microbiota by selecting for functional traits that preserve fitness in dry conditions. Currently, little is known about how the resulting precipitation legacy effects manifest at the molecular and physiological 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 available under aCC-BY-NC-ND 4.0 International license. (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made bioRxiv preprint doi: https://doi.org/10.1101/2024.08.26.609769; this version posted June 23, 2025. The copyright holder for this preprint levels and how they influence neighboring plants, especially in the context of subsequent drought. We characterized metagenomes of six prairie soils spanning a steep precipitation gradient in Kansas, USA. By statistically controlling for variation in soil porosity and elemental profiles, we identified bacterial taxa and functional gene categories associated with precipitation. This microbial precipitation legacy persisted through a 5-month-long experimental drought and mitigated the negative physiological effects of acute drought for a wild grass species that is native to the precipitation gradient, but not for the domesticated crop species maize. In particular, microbiota with a low-precipitation legacy altered transcription of a subset of host genes that mediate transpiration and intrinsic water use efficiency during drought. Our results show how long-term exposure to water stress alters soil microbial communities with consequences for the drought responses of neighboring plants. 
    more » « less
  3. Abstract Both chronic and acute drought alter the composition and physiology of soil microbiota by selecting for functional traits that preserve fitness in dry conditions. Currently, little is known about how the resulting precipitation legacy effects manifest at the molecular and physiological levels and how they influence neighboring plants, especially in the context of subsequent drought. We characterized metagenomes of six prairie soils spanning a steep precipitation gradient in Kansas, USA. By statistically controlling for variation in soil porosity and elemental profiles, we identified bacterial taxa and functional gene categories associated with precipitation. This microbial precipitation legacy persisted through a 5-month-long experimental drought and mitigated the negative physiological effects of acute drought for a wild grass species that is native to the precipitation gradient, but not for the domesticated crop species maize. In particular, microbiota with a low-precipitation legacy altered transcription of a subset of host genes that mediate transpiration and intrinsic water use efficiency during drought. Our results show how long-term exposure to water stress alters soil microbial communities with consequences for the drought responses of neighboring plants. 
    more » « less
  4. null (Ed.)
  5. Plants have an innate immune system to fight off potential invaders that is based on the perception of nonself or modified-self molecules. Microbe-associated molecular patterns (MAMPs) are evolutionarily conserved microbial molecules whose extracellular detection by specific cell surface receptors initiates an array of biochemical responses collectively known as MAMP-triggered immunity (MTI). Well-characterized MAMPs include chitin, peptidoglycan, and flg22, a 22-amino acid epitope found in the major building block of the bacterial flagellum, FliC. The importance of MAMP detection by the plant immune system is underscored by the large diversity of strategies used by pathogens to interfere with MTI and that failure to do so is often associated with loss of virulence. Yet, whether or how MTI functions beyond pathogenic interactions is not well understood. Here we demonstrate that a community of root commensal bacteria modulates a specific and evolutionarily conserved sector of theArabidopsisimmune system. We identify a set of robust, taxonomically diverse MTI suppressor strains that are efficient root colonizers and, notably, can enhance the colonization capacity of other tested commensal bacteria. We highlight the importance of extracellular strategies for MTI suppression by showing that the type 2, not the type 3, secretion system is required for the immunomodulatory activity of one robust MTI suppressor. Our findings reveal that root colonization by commensals is controlled by MTI, which, in turn, can be selectively modulated by specific members of a representative bacterial root microbiota. 
    more » « less
  6. Plant roots and animal guts have evolved specialized cell layers to control mineral nutrient homeostasis. These layers must tolerate the resident microbiota while keeping homeostatic integrity. Whether and how the root diffusion barriers in the endodermis, which are critical for the mineral nutrient balance of plants, coordinate with the microbiota is unknown. We demonstrate that genes controlling endodermal function in the model plantArabidopsis thalianacontribute to the plant microbiome assembly. We characterized a regulatory mechanism of endodermal differentiation driven by the microbiota with profound effects on nutrient homeostasis. Furthermore, we demonstrate that this mechanism is linked to the microbiota’s capacity to repress responses to the phytohormone abscisic acid in the root. Our findings establish the endodermis as a regulatory hub coordinating microbiota assembly and homeostatic mechanisms. 
    more » « less